Loading...
Searching...
No Matches
YOLO DNNs
Table of Contents
Prev Tutorial: How to run deep networks on Android device
Next Tutorial: How to run deep networks in browser
Original author | Alessandro de Oliveira Faria |
Compatibility | OpenCV >= 3.3.1 |
Introduction
In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image).
We will demonstrate results of this example on the following picture.
Examples
VIDEO DEMO:
Source Code
Use a universal sample for object detection models written in C++ and in Python languages
Usage examples
Execute in webcam:
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --rgb
Execute with image or video file:
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --input=[PATH-TO-IMAGE-OR-VIDEO-FILE] --rgb
Questions and suggestions email to: Alessandro de Oliveira Faria cabel.nosp@m.o@op.nosp@m.ensus.nosp@m.e.or.nosp@m.g or OpenCV Team.