Loading...
Searching...
No Matches
Object Recognition
Classes | |
class | cv::datasets::OR_imagenet |
struct | cv::datasets::OR_imagenetObj |
class | cv::datasets::OR_mnist |
struct | cv::datasets::OR_mnistObj |
class | cv::datasets::OR_pascal |
struct | cv::datasets::OR_pascalObj |
class | cv::datasets::OR_sun |
struct | cv::datasets::OR_sunObj |
struct | cv::datasets::PascalObj |
struct | cv::datasets::PascalPart |
Detailed Description
ImageNet
Implements loading dataset: "ImageNet": http://www.image-net.org/
Usage:
- From link above download dataset files:
ILSVRC2010_images_train.tar\ILSVRC2010_images_test.tar\ILSVRC2010_images_val.tar
& devkit:ILSVRC2010_devkit-1.0.tar.gz
(Implemented loading of 2010 dataset as only this dataset has ground truth for test data, but structure for ILSVRC2014 is similar) - Unpack them to:
some_folder/train/
,some_folder/test/
,some_folder/val
&some_folder/ILSVRC2010_validation_ground_truth.txt
,some_folder/ILSVRC2010_test_ground_truth.txt
. - Create file with labels:
some_folder/labels.txt
, for example, using python script below (each file's row format:synset,labelID,description
. For example: "n07751451,18,plum"). - Unpack all tar files in train.
- To load data run: ./opencv/build/bin/example_datasets_or_imagenet -p=/home/user/some_folder/
Python script to parse meta.mat
:
import scipy.io
meta_mat = scipy.io.loadmat("devkit-1.0/data/meta.mat")
labels_dic = dict((m[0][1][0], m[0][0][0][0]-1) for m in meta_mat['synsets']
label_names_dic = dict((m[0][1][0], m[0][2][0]) for m in meta_mat['synsets']
for label in labels_dic.keys():
print "{0},{1},{2}".format(label, labels_dic[label], label_names_dic[label])
MNIST
Implements loading dataset:
"MNIST": http://yann.lecun.com/exdb/mnist/
Usage:
- From link above download dataset files:
t10k-images-idx3-ubyte.gz
,t10k-labels-idx1-ubyte.gz
,train-images-idx3-ubyte.gz
,train-labels-idx1-ubyte.gz
. - Unpack them.
- To load data run: ./opencv/build/bin/example_datasets_or_mnist -p=/home/user/path_to_unpacked_files/
SUN Database
Implements loading dataset:
"SUN Database, Scene Recognition Benchmark. SUN397": http://vision.cs.princeton.edu/projects/2010/SUN/
Usage:
- From link above download dataset file:
SUN397.tar
& file with splits:Partitions.zip
- Unpack
SUN397.tar
into folder:SUN397/
&Partitions.zip
into folder:SUN397/Partitions/
- To load data run: ./opencv/build/bin/example_datasets_or_sun -p=/home/user/path_to_unpacked_files/SUN397/