struct DetectorParameters is used by ArucoDetector More...
#include <opencv2/objdetect/aruco_detector.hpp>
Public Member Functions | |
DetectorParameters () | |
bool | readDetectorParameters (const FileNode &fn) |
Read a new set of DetectorParameters from FileNode (use FileStorage.root()). | |
bool | writeDetectorParameters (FileStorage &fs, const String &name=String()) |
Write a set of DetectorParameters to FileStorage. | |
Public Attributes | |
double | adaptiveThreshConstant |
constant for adaptive thresholding before finding contours (default 7) | |
int | adaptiveThreshWinSizeMax |
maximum window size for adaptive thresholding before finding contours (default 23). | |
int | adaptiveThreshWinSizeMin |
minimum window size for adaptive thresholding before finding contours (default 3). | |
int | adaptiveThreshWinSizeStep |
increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax during the thresholding (default 10). | |
float | aprilTagCriticalRad |
reject quads where pairs of edges have angles that are close to straight or close to 180 degrees. | |
int | aprilTagDeglitch |
should the thresholded image be deglitched? Only useful for very noisy images (default 0). | |
float | aprilTagMaxLineFitMse |
when fitting lines to the contours, what is the maximum mean squared error | |
int | aprilTagMaxNmaxima |
how many corner candidates to consider when segmenting a group of pixels into a quad (default 10). | |
int | aprilTagMinClusterPixels |
reject quads containing too few pixels (default 5). | |
int | aprilTagMinWhiteBlackDiff |
add an extra check that the white model must be (overall) brighter than the black model. | |
float | aprilTagQuadDecimate |
April :: User-configurable parameters. | |
float | aprilTagQuadSigma |
what Gaussian blur should be applied to the segmented image (used for quad detection?) | |
int | cornerRefinementMaxIterations |
maximum number of iterations for stop criteria of the corner refinement process (default 30). | |
int | cornerRefinementMethod |
default value CORNER_REFINE_NONE | |
double | cornerRefinementMinAccuracy |
minimum error for the stop cristeria of the corner refinement process (default: 0.1) | |
int | cornerRefinementWinSize |
window size for the corner refinement process (in pixels) (default 5). | |
bool | detectInvertedMarker |
to check if there is a white marker. | |
double | errorCorrectionRate |
error correction rate respect to the maximun error correction capability for each dictionary (default 0.6). | |
int | markerBorderBits |
number of bits of the marker border, i.e. marker border width (default 1). | |
double | maxErroneousBitsInBorderRate |
maximum number of accepted erroneous bits in the border (i.e. number of allowed white bits in the border). | |
double | maxMarkerPerimeterRate |
determine maximum perimeter for marker contour to be detected. | |
double | minCornerDistanceRate |
minimum distance between corners for detected markers relative to its perimeter (default 0.05) | |
int | minDistanceToBorder |
minimum distance of any corner to the image border for detected markers (in pixels) (default 3) | |
double | minMarkerDistanceRate |
minimum mean distance beetween two marker corners to be considered imilar, so that the smaller one is removed. | |
float | minMarkerLengthRatioOriginalImg |
range [0,1], eq (2) from paper. The parameter tau_i has a direct influence on the processing speed. | |
double | minMarkerPerimeterRate |
determine minimum perimeter for marker contour to be detected. | |
double | minOtsuStdDev |
minimun standard deviation in pixels values during the decodification step to apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher than 128 or not) (default 5.0) | |
int | minSideLengthCanonicalImg |
minimum side length of a marker in the canonical image. Latter is the binarized image in which contours are searched. | |
double | perspectiveRemoveIgnoredMarginPerCell |
width of the margin of pixels on each cell not considered for the determination of the cell bit. | |
int | perspectiveRemovePixelPerCell |
number of bits (per dimension) for each cell of the marker when removing the perspective (default 4). | |
double | polygonalApproxAccuracyRate |
minimum accuracy during the polygonal approximation process to determine which contours are squares. (default 0.03) | |
bool | useAruco3Detection |
enable the new and faster Aruco detection strategy. | |
Detailed Description
struct DetectorParameters is used by ArucoDetector
Constructor & Destructor Documentation
◆ DetectorParameters()
|
inline |
Member Function Documentation
◆ readDetectorParameters()
bool cv::aruco::DetectorParameters::readDetectorParameters | ( | const FileNode & | fn | ) |
Read a new set of DetectorParameters from FileNode (use FileStorage.root()).
◆ writeDetectorParameters()
bool cv::aruco::DetectorParameters::writeDetectorParameters | ( | FileStorage & | fs, |
const String & | name = String() |
||
) |
Write a set of DetectorParameters to FileStorage.
Member Data Documentation
◆ adaptiveThreshConstant
double cv::aruco::DetectorParameters::adaptiveThreshConstant |
constant for adaptive thresholding before finding contours (default 7)
◆ adaptiveThreshWinSizeMax
int cv::aruco::DetectorParameters::adaptiveThreshWinSizeMax |
maximum window size for adaptive thresholding before finding contours (default 23).
◆ adaptiveThreshWinSizeMin
int cv::aruco::DetectorParameters::adaptiveThreshWinSizeMin |
minimum window size for adaptive thresholding before finding contours (default 3).
◆ adaptiveThreshWinSizeStep
int cv::aruco::DetectorParameters::adaptiveThreshWinSizeStep |
increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax during the thresholding (default 10).
◆ aprilTagCriticalRad
float cv::aruco::DetectorParameters::aprilTagCriticalRad |
reject quads where pairs of edges have angles that are close to straight or close to 180 degrees.
Zero means that no quads are rejected. (In radians) (default 10*PI/180)
◆ aprilTagDeglitch
int cv::aruco::DetectorParameters::aprilTagDeglitch |
should the thresholded image be deglitched? Only useful for very noisy images (default 0).
◆ aprilTagMaxLineFitMse
float cv::aruco::DetectorParameters::aprilTagMaxLineFitMse |
when fitting lines to the contours, what is the maximum mean squared error
◆ aprilTagMaxNmaxima
int cv::aruco::DetectorParameters::aprilTagMaxNmaxima |
how many corner candidates to consider when segmenting a group of pixels into a quad (default 10).
◆ aprilTagMinClusterPixels
int cv::aruco::DetectorParameters::aprilTagMinClusterPixels |
reject quads containing too few pixels (default 5).
◆ aprilTagMinWhiteBlackDiff
int cv::aruco::DetectorParameters::aprilTagMinWhiteBlackDiff |
add an extra check that the white model must be (overall) brighter than the black model.
When we build our model of black & white pixels, we add an extra check that the white model must be (overall) brighter than the black model. How much brighter? (in pixel values, [0,255]), (default 5)
◆ aprilTagQuadDecimate
float cv::aruco::DetectorParameters::aprilTagQuadDecimate |
April :: User-configurable parameters.
Detection of quads can be done on a lower-resolution image, improving speed at a cost of pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
◆ aprilTagQuadSigma
float cv::aruco::DetectorParameters::aprilTagQuadSigma |
what Gaussian blur should be applied to the segmented image (used for quad detection?)
◆ cornerRefinementMaxIterations
int cv::aruco::DetectorParameters::cornerRefinementMaxIterations |
maximum number of iterations for stop criteria of the corner refinement process (default 30).
◆ cornerRefinementMethod
int cv::aruco::DetectorParameters::cornerRefinementMethod |
default value CORNER_REFINE_NONE
◆ cornerRefinementMinAccuracy
double cv::aruco::DetectorParameters::cornerRefinementMinAccuracy |
minimum error for the stop cristeria of the corner refinement process (default: 0.1)
◆ cornerRefinementWinSize
int cv::aruco::DetectorParameters::cornerRefinementWinSize |
window size for the corner refinement process (in pixels) (default 5).
◆ detectInvertedMarker
bool cv::aruco::DetectorParameters::detectInvertedMarker |
to check if there is a white marker.
In order to generate a "white" marker just invert a normal marker by using a tilde, ~markerImage. (default false)
◆ errorCorrectionRate
double cv::aruco::DetectorParameters::errorCorrectionRate |
error correction rate respect to the maximun error correction capability for each dictionary (default 0.6).
◆ markerBorderBits
int cv::aruco::DetectorParameters::markerBorderBits |
number of bits of the marker border, i.e. marker border width (default 1).
◆ maxErroneousBitsInBorderRate
double cv::aruco::DetectorParameters::maxErroneousBitsInBorderRate |
maximum number of accepted erroneous bits in the border (i.e. number of allowed white bits in the border).
Represented as a rate respect to the total number of bits per marker (default 0.35).
◆ maxMarkerPerimeterRate
double cv::aruco::DetectorParameters::maxMarkerPerimeterRate |
determine maximum perimeter for marker contour to be detected.
This is defined as a rate respect to the maximum dimension of the input image (default 4.0).
◆ minCornerDistanceRate
double cv::aruco::DetectorParameters::minCornerDistanceRate |
minimum distance between corners for detected markers relative to its perimeter (default 0.05)
◆ minDistanceToBorder
int cv::aruco::DetectorParameters::minDistanceToBorder |
minimum distance of any corner to the image border for detected markers (in pixels) (default 3)
◆ minMarkerDistanceRate
double cv::aruco::DetectorParameters::minMarkerDistanceRate |
minimum mean distance beetween two marker corners to be considered imilar, so that the smaller one is removed.
The rate is relative to the smaller perimeter of the two markers (default 0.05).
◆ minMarkerLengthRatioOriginalImg
float cv::aruco::DetectorParameters::minMarkerLengthRatioOriginalImg |
range [0,1], eq (2) from paper. The parameter tau_i has a direct influence on the processing speed.
◆ minMarkerPerimeterRate
double cv::aruco::DetectorParameters::minMarkerPerimeterRate |
determine minimum perimeter for marker contour to be detected.
This is defined as a rate respect to the maximum dimension of the input image (default 0.03).
◆ minOtsuStdDev
double cv::aruco::DetectorParameters::minOtsuStdDev |
minimun standard deviation in pixels values during the decodification step to apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher than 128 or not) (default 5.0)
◆ minSideLengthCanonicalImg
int cv::aruco::DetectorParameters::minSideLengthCanonicalImg |
minimum side length of a marker in the canonical image. Latter is the binarized image in which contours are searched.
◆ perspectiveRemoveIgnoredMarginPerCell
double cv::aruco::DetectorParameters::perspectiveRemoveIgnoredMarginPerCell |
width of the margin of pixels on each cell not considered for the determination of the cell bit.
Represents the rate respect to the total size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
◆ perspectiveRemovePixelPerCell
int cv::aruco::DetectorParameters::perspectiveRemovePixelPerCell |
number of bits (per dimension) for each cell of the marker when removing the perspective (default 4).
◆ polygonalApproxAccuracyRate
double cv::aruco::DetectorParameters::polygonalApproxAccuracyRate |
minimum accuracy during the polygonal approximation process to determine which contours are squares. (default 0.03)
◆ useAruco3Detection
bool cv::aruco::DetectorParameters::useAruco3Detection |
enable the new and faster Aruco detection strategy.
Proposed in the paper: Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018) https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
The documentation for this struct was generated from the following file:
- opencv2/objdetect/aruco_detector.hpp