Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor. More...
#include <opencv2/features2d.hpp>
Public Types | |
enum | ScoreType { HARRIS_SCORE =0 , FAST_SCORE =1 } |
Public Member Functions | |
virtual String | getDefaultName () const CV_OVERRIDE |
virtual int | getEdgeThreshold () const =0 |
virtual int | getFastThreshold () const =0 |
virtual int | getFirstLevel () const =0 |
virtual int | getMaxFeatures () const =0 |
virtual int | getNLevels () const =0 |
virtual int | getPatchSize () const =0 |
virtual double | getScaleFactor () const =0 |
virtual ORB::ScoreType | getScoreType () const =0 |
virtual int | getWTA_K () const =0 |
virtual void | setEdgeThreshold (int edgeThreshold)=0 |
virtual void | setFastThreshold (int fastThreshold)=0 |
virtual void | setFirstLevel (int firstLevel)=0 |
virtual void | setMaxFeatures (int maxFeatures)=0 |
virtual void | setNLevels (int nlevels)=0 |
virtual void | setPatchSize (int patchSize)=0 |
virtual void | setScaleFactor (double scaleFactor)=0 |
virtual void | setScoreType (ORB::ScoreType scoreType)=0 |
virtual void | setWTA_K (int wta_k)=0 |
Public Member Functions inherited from cv::Feature2D | |
virtual | ~Feature2D () |
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). | |
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
virtual int | defaultNorm () const |
virtual int | descriptorSize () const |
virtual int | descriptorType () const |
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
Detects keypoints in an image (first variant) or image set (second variant). | |
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
virtual bool | empty () const CV_OVERRIDE |
Return true if detector object is empty. | |
virtual String | getDefaultName () const CV_OVERRIDE |
virtual void | read (const FileNode &) CV_OVERRIDE |
Reads algorithm parameters from a file storage. | |
void | read (const String &fileName) |
void | write (const Ptr< FileStorage > &fs, const String &name) const |
void | write (const String &fileName) const |
virtual void | write (FileStorage &) const CV_OVERRIDE |
Stores algorithm parameters in a file storage. | |
void | write (FileStorage &fs, const String &name) const |
Public Member Functions inherited from cv::Algorithm | |
Algorithm () | |
virtual | ~Algorithm () |
virtual void | clear () |
Clears the algorithm state. | |
virtual bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read. | |
virtual String | getDefaultName () const |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. | |
virtual void | save (const String &filename) const |
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. | |
void | write (FileStorage &fs, const String &name) const |
Static Public Member Functions | |
static Ptr< ORB > | create (int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, int firstLevel=0, int WTA_K=2, ORB::ScoreType scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20) |
The ORB constructor. | |
Static Public Member Functions inherited from cv::Algorithm | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. | |
Static Public Attributes | |
static const int | kBytes = 32 |
Additional Inherited Members | |
Protected Member Functions inherited from cv::Algorithm | |
void | writeFormat (FileStorage &fs) const |
Detailed Description
Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor.
described in [RRKB11] . The algorithm uses FAST in pyramids to detect stable keypoints, selects the strongest features using FAST or Harris response, finds their orientation using first-order moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or k-tuples) are rotated according to the measured orientation).
Member Enumeration Documentation
◆ ScoreType
enum cv::ORB::ScoreType |
Member Function Documentation
◆ create()
|
static |
The ORB constructor.
- Parameters
-
nfeatures The maximum number of features to retain. scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer. nlevels The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels - firstLevel). edgeThreshold This is size of the border where the features are not detected. It should roughly match the patchSize parameter. firstLevel The level of pyramid to put source image to. Previous layers are filled with upscaled source image. WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute. patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger. fastThreshold the fast threshold
◆ getDefaultName()
|
virtual |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
◆ getEdgeThreshold()
|
pure virtual |
◆ getFastThreshold()
|
pure virtual |
◆ getFirstLevel()
|
pure virtual |
◆ getMaxFeatures()
|
pure virtual |
◆ getNLevels()
|
pure virtual |
◆ getPatchSize()
|
pure virtual |
◆ getScaleFactor()
|
pure virtual |
◆ getScoreType()
|
pure virtual |
◆ getWTA_K()
|
pure virtual |
◆ setEdgeThreshold()
|
pure virtual |
◆ setFastThreshold()
|
pure virtual |
◆ setFirstLevel()
|
pure virtual |
◆ setMaxFeatures()
|
pure virtual |
◆ setNLevels()
|
pure virtual |
◆ setPatchSize()
|
pure virtual |
◆ setScaleFactor()
|
pure virtual |
◆ setScoreType()
|
pure virtual |
◆ setWTA_K()
|
pure virtual |
Member Data Documentation
◆ kBytes
|
static |
The documentation for this class was generated from the following file:
- opencv2/features2d.hpp