Loading...
Searching...
No Matches
cv::dnn::KeypointsModel Class Reference
This class represents high-level API for keypoints models. More...
#include <opencv2/dnn/dnn.hpp>
Inheritance diagram for cv::dnn::KeypointsModel:

Public Member Functions | |
KeypointsModel (const Net &network) | |
Create model from deep learning network. | |
KeypointsModel (const String &model, const String &config="") | |
Create keypoints model from network represented in one of the supported formats. An order of model and config arguments does not matter. | |
std::vector< Point2f > | estimate (InputArray frame, float thresh=0.5) |
Given the input frame, create input blob, run net. | |
![]() | |
Model () | |
Model (const Model &)=default | |
Model (const Net &network) | |
Create model from deep learning network. | |
Model (const String &model, const String &config="") | |
Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter. | |
Model (Model &&)=default | |
Impl * | getImpl () const |
Impl & | getImplRef () const |
Net & | getNetwork_ () |
Net & | getNetwork_ () const |
operator Net & () const | |
Model & | operator= (const Model &)=default |
Model & | operator= (Model &&)=default |
void | predict (InputArray frame, OutputArrayOfArrays outs) const |
Given the input frame, create input blob, run net and return the output blobs . | |
Model & | setInputCrop (bool crop) |
Set flag crop for frame. | |
Model & | setInputMean (const Scalar &mean) |
Set mean value for frame. | |
void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
Set preprocessing parameters for frame. | |
Model & | setInputScale (const Scalar &scale) |
Set scalefactor value for frame. | |
Model & | setInputSize (const Size &size) |
Set input size for frame. | |
Model & | setInputSize (int width, int height) |
Model & | setInputSwapRB (bool swapRB) |
Set flag swapRB for frame. | |
Model & | setPreferableBackend (dnn::Backend backendId) |
Model & | setPreferableTarget (dnn::Target targetId) |
Additional Inherited Members | |
![]() | |
Ptr< Impl > | impl |
Detailed Description
This class represents high-level API for keypoints models.
KeypointsModel allows to set params for preprocessing input image. KeypointsModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
Constructor & Destructor Documentation
◆ KeypointsModel() [1/2]
Create keypoints model from network represented in one of the supported formats. An order of model
and config
arguments does not matter.
- Parameters
-
[in] model Binary file contains trained weights. [in] config Text file contains network configuration.
◆ KeypointsModel() [2/2]
cv::dnn::KeypointsModel::KeypointsModel | ( | const Net & | network | ) |
Create model from deep learning network.
- Parameters
-
[in] network Net object.
Member Function Documentation
◆ estimate()
std::vector< Point2f > cv::dnn::KeypointsModel::estimate | ( | InputArray | frame, |
float | thresh = 0.5 |
||
) |
Given the input
frame, create input blob, run net.
- Parameters
-
[in] frame The input image. thresh minimum confidence threshold to select a keypoint
- Returns
- a vector holding the x and y coordinates of each detected keypoint
The documentation for this class was generated from the following file:
- opencv2/dnn/dnn.hpp