Loading...
Searching...
No Matches
samples/cpp/train_HOG.cpp
#include "opencv2/ml.hpp"
#include <iostream>
#include <time.h>
using namespace cv;
using namespace cv::ml;
using namespace std;
vector< float > get_svm_detector( const Ptr< SVM >& svm );
void convert_to_ml( const std::vector< Mat > & train_samples, Mat& trainData );
void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages );
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip );
void test_trained_detector( String obj_det_filename, String test_dir, String videofilename );
vector< float > get_svm_detector( const Ptr< SVM >& svm )
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction( 0, alpha, svidx );
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
CV_Assert( sv.type() == CV_32F );
vector< float > hog_detector( sv.cols + 1 );
memcpy( &hog_detector[0], sv.ptr(), sv.cols*sizeof( hog_detector[0] ) );
hog_detector[sv.cols] = (float)-rho;
return hog_detector;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml( const vector< Mat > & train_samples, Mat& trainData )
{
//--Convert data
const int rows = (int)train_samples.size();
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
Mat tmp( 1, cols, CV_32FC1 ); //< used for transposition if needed
trainData = Mat( rows, cols, CV_32FC1 );
for( size_t i = 0 ; i < train_samples.size(); ++i )
{
CV_Assert( train_samples[i].cols == 1 || train_samples[i].rows == 1 );
if( train_samples[i].cols == 1 )
{
transpose( train_samples[i], tmp );
tmp.copyTo( trainData.row( (int)i ) );
}
else if( train_samples[i].rows == 1 )
{
train_samples[i].copyTo( trainData.row( (int)i ) );
}
}
}
void load_images( const String & dirname, vector< Mat > & img_lst, bool showImages = false )
{
vector< String > files;
glob( dirname, files );
for ( size_t i = 0; i < files.size(); ++i )
{
Mat img = imread( files[i] ); // load the image
if ( img.empty() )
{
cout << files[i] << " is invalid!" << endl; // invalid image, skip it.
continue;
}
if ( showImages )
{
imshow( "image", img );
waitKey( 1 );
}
img_lst.push_back( img );
}
}
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
{
Rect box;
box.width = size.width;
box.height = size.height;
srand( (unsigned int)time( NULL ) );
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
if ( full_neg_lst[i].cols > box.width && full_neg_lst[i].rows > box.height )
{
box.x = rand() % ( full_neg_lst[i].cols - box.width );
box.y = rand() % ( full_neg_lst[i].rows - box.height );
Mat roi = full_neg_lst[i]( box );
neg_lst.push_back( roi.clone() );
}
}
void computeHOGs( const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst, bool use_flip )
{
hog.winSize = wsize;
Mat gray;
vector< float > descriptors;
for( size_t i = 0 ; i < img_lst.size(); i++ )
{
if ( img_lst[i].cols >= wsize.width && img_lst[i].rows >= wsize.height )
{
Rect r = Rect(( img_lst[i].cols - wsize.width ) / 2,
( img_lst[i].rows - wsize.height ) / 2,
wsize.width,
wsize.height);
cvtColor( img_lst[i](r), gray, COLOR_BGR2GRAY );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) );
gradient_lst.push_back( Mat( descriptors ).clone() );
if ( use_flip )
{
flip( gray, gray, 1 );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ) );
gradient_lst.push_back( Mat( descriptors ).clone() );
}
}
}
}
void test_trained_detector( String obj_det_filename, String test_dir, String videofilename )
{
cout << "Testing trained detector..." << endl;
hog.load( obj_det_filename );
vector< String > files;
glob( test_dir, files );
int delay = 0;
if ( videofilename != "" )
{
if ( videofilename.size() == 1 && isdigit( videofilename[0] ) )
cap.open( videofilename[0] - '0' );
else
cap.open( videofilename );
}
obj_det_filename = "testing " + obj_det_filename;
namedWindow( obj_det_filename, WINDOW_NORMAL );
for( size_t i=0;; i++ )
{
Mat img;
if ( cap.isOpened() )
{
cap >> img;
delay = 1;
}
else if( i < files.size() )
{
img = imread( files[i] );
}
if ( img.empty() )
{
return;
}
vector< Rect > detections;
vector< double > foundWeights;
hog.detectMultiScale( img, detections, foundWeights );
for ( size_t j = 0; j < detections.size(); j++ )
{
Scalar color = Scalar( 0, foundWeights[j] * foundWeights[j] * 200, 0 );
rectangle( img, detections[j], color, img.cols / 400 + 1 );
}
imshow( obj_det_filename, img );
if( waitKey( delay ) == 27 )
{
return;
}
}
}
int main( int argc, char** argv )
{
const char* keys =
{
"{help h| | show help message}"
"{pd | | path of directory contains positive images}"
"{nd | | path of directory contains negative images}"
"{td | | path of directory contains test images}"
"{tv | | test video file name}"
"{dw | | width of the detector}"
"{dh | | height of the detector}"
"{f |false| indicates if the program will generate and use mirrored samples or not}"
"{d |false| train twice}"
"{t |false| test a trained detector}"
"{v |false| visualize training steps}"
"{fn |my_detector.yml| file name of trained SVM}"
};
CommandLineParser parser( argc, argv, keys );
if ( parser.has( "help" ) )
{
parser.printMessage();
exit( 0 );
}
String pos_dir = parser.get< String >( "pd" );
String neg_dir = parser.get< String >( "nd" );
String test_dir = parser.get< String >( "td" );
String obj_det_filename = parser.get< String >( "fn" );
String videofilename = parser.get< String >( "tv" );
int detector_width = parser.get< int >( "dw" );
int detector_height = parser.get< int >( "dh" );
bool test_detector = parser.get< bool >( "t" );
bool train_twice = parser.get< bool >( "d" );
bool visualization = parser.get< bool >( "v" );
bool flip_samples = parser.get< bool >( "f" );
if ( test_detector )
{
test_trained_detector( obj_det_filename, test_dir, videofilename );
exit( 0 );
}
if( pos_dir.empty() || neg_dir.empty() )
{
parser.printMessage();
cout << "Wrong number of parameters.\n\n"
<< "Example command line:\n" << argv[0] << " -dw=64 -dh=128 -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian64x128.xml -d\n"
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -fn=HOGpedestrian64x128.xml -td=/INRIAPerson/Test/pos";
exit( 1 );
}
vector< Mat > pos_lst, full_neg_lst, neg_lst, gradient_lst;
vector< int > labels;
clog << "Positive images are being loaded..." ;
load_images( pos_dir, pos_lst, visualization );
if ( pos_lst.size() > 0 )
{
clog << "...[done] " << pos_lst.size() << " files." << endl;
}
else
{
clog << "no image in " << pos_dir <<endl;
return 1;
}
Size pos_image_size = pos_lst[0].size();
if ( detector_width && detector_height )
{
pos_image_size = Size( detector_width, detector_height );
}
else
{
for ( size_t i = 0; i < pos_lst.size(); ++i )
{
if( pos_lst[i].size() != pos_image_size )
{
cout << "All positive images should be same size!" << endl;
exit( 1 );
}
}
pos_image_size = pos_image_size / 8 * 8;
}
clog << "Negative images are being loaded...";
load_images( neg_dir, full_neg_lst, visualization );
clog << "...[done] " << full_neg_lst.size() << " files." << endl;
clog << "Negative images are being processed...";
sample_neg( full_neg_lst, neg_lst, pos_image_size );
clog << "...[done] " << neg_lst.size() << " files." << endl;
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
size_t positive_count = gradient_lst.size();
labels.assign( positive_count, +1 );
clog << "...[done] ( positive images count : " << positive_count << " )" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
size_t negative_count = gradient_lst.size() - positive_count;
labels.insert( labels.end(), negative_count, -1 );
CV_Assert( positive_count < labels.size() );
clog << "...[done] ( negative images count : " << negative_count << " )" << endl;
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Training SVM...";
Ptr< SVM > svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0( 0.0 );
svm->setDegree( 3 );
svm->setTermCriteria( TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 1e-3 ) );
svm->setGamma( 0 );
svm->setKernel( SVM::LINEAR );
svm->setNu( 0.5 );
svm->setP( 0.1 ); // for EPSILON_SVR, epsilon in loss function?
svm->setC( 0.01 ); // From paper, soft classifier
svm->setType( SVM::EPS_SVR ); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train( train_data, ROW_SAMPLE, labels );
clog << "...[done]" << endl;
if ( train_twice )
{
clog << "Testing trained detector on negative images. This might take a few minutes...";
HOGDescriptor my_hog;
my_hog.winSize = pos_image_size;
// Set the trained svm to my_hog
my_hog.setSVMDetector( get_svm_detector( svm ) );
vector< Rect > detections;
vector< double > foundWeights;
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
{
if ( full_neg_lst[i].cols >= pos_image_size.width && full_neg_lst[i].rows >= pos_image_size.height )
my_hog.detectMultiScale( full_neg_lst[i], detections, foundWeights );
else
detections.clear();
for ( size_t j = 0; j < detections.size(); j++ )
{
Mat detection = full_neg_lst[i]( detections[j] ).clone();
resize( detection, detection, pos_image_size, 0, 0, INTER_LINEAR_EXACT);
neg_lst.push_back( detection );
}
if ( visualization )
{
for ( size_t j = 0; j < detections.size(); j++ )
{
rectangle( full_neg_lst[i], detections[j], Scalar( 0, 255, 0 ), 2 );
}
imshow( "testing trained detector on negative images", full_neg_lst[i] );
waitKey( 5 );
}
}
clog << "...[done]" << endl;
gradient_lst.clear();
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
positive_count = gradient_lst.size();
clog << "...[done] ( positive count : " << positive_count << " )" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
negative_count = gradient_lst.size() - positive_count;
clog << "...[done] ( negative count : " << negative_count << " )" << endl;
labels.clear();
labels.assign(positive_count, +1);
labels.insert(labels.end(), negative_count, -1);
clog << "Training SVM again...";
convert_to_ml( gradient_lst, train_data );
svm->train( train_data, ROW_SAMPLE, labels );
clog << "...[done]" << endl;
}
hog.winSize = pos_image_size;
hog.setSVMDetector( get_svm_detector( svm ) );
hog.save( obj_det_filename );
test_trained_detector( obj_det_filename, test_dir, videofilename );
return 0;
}
Designed for command line parsing.
Definition: utility.hpp:818
n-dimensional dense array class
Definition: mat.hpp:811
CV_NODISCARD_STD Mat clone() const
Creates a full copy of the array and the underlying data.
Mat row(int y) const
Creates a matrix header for the specified matrix row.
uchar * ptr(int i0=0)
Returns a pointer to the specified matrix row.
_Tp & at(int i0=0)
Returns a reference to the specified array element.
int cols
Definition: mat.hpp:2137
size_t total() const
Returns the total number of array elements.
bool empty() const
Returns true if the array has no elements.
int rows
the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
Definition: mat.hpp:2137
int type() const
Returns the type of a matrix element.
void push_back(const _Tp &elem)
Adds elements to the bottom of the matrix.
Template class for 2D rectangles.
Definition: types.hpp:444
_Tp x
x coordinate of the top-left corner
Definition: types.hpp:480
_Tp y
y coordinate of the top-left corner
Definition: types.hpp:481
_Tp width
width of the rectangle
Definition: types.hpp:482
_Tp height
height of the rectangle
Definition: types.hpp:483
Template class for specifying the size of an image or rectangle.
Definition: types.hpp:335
_Tp height
the height
Definition: types.hpp:363
_Tp width
the width
Definition: types.hpp:362
The class defining termination criteria for iterative algorithms.
Definition: types.hpp:886
Class for video capturing from video files, image sequences or cameras.
Definition: videoio.hpp:728
virtual bool open(const String &filename, int apiPreference=CAP_ANY)
Opens a video file or a capturing device or an IP video stream for video capturing.
virtual bool isOpened() const
Returns true if video capturing has been initialized already.
void flip(InputArray src, OutputArray dst, int flipCode)
Flips a 2D array around vertical, horizontal, or both axes.
std::string String
Definition: cvstd.hpp:152
std::shared_ptr< _Tp > Ptr
Definition: cvstd_wrapper.hpp:23
#define CV_64F
Definition: interface.h:79
#define CV_32FC1
Definition: interface.h:118
#define CV_32F
Definition: interface.h:78
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition: base.hpp:342
void glob(String pattern, std::vector< String > &result, bool recursive=false)
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int waitKey(int delay=0)
Waits for a pressed key.
void namedWindow(const String &winname, int flags=WINDOW_AUTOSIZE)
Creates a window.
CV_EXPORTS_W Mat imread(const String &filename, int flags=IMREAD_COLOR)
Loads an image from a file.
void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
Converts an image from one color space to another.
void rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a simple, thick, or filled up-right rectangle.
void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
Resizes an image.
GOpaque< Size > size(const GMat &src)
Gets dimensions from Mat.
Definition: ml.hpp:75
"black box" representation of the file storage associated with a file on disk.
Definition: core.hpp:106
STL namespace.
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
Definition: objdetect.hpp:401
virtual void compute(InputArray img, std::vector< float > &descriptors, Size winStride=Size(), Size padding=Size(), const std::vector< Point > &locations=std::vector< Point >()) const
Computes HOG descriptors of given image.
virtual void save(const String &filename, const String &objname=String()) const
saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
virtual void setSVMDetector(InputArray svmdetector)
Sets coefficients for the linear SVM classifier.
Size winSize
Detection window size. Align to block size and block stride. Default value is Size(64,...
Definition: objdetect.hpp:619
virtual bool load(const String &filename, const String &objname=String())
loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
virtual void detectMultiScale(InputArray img, std::vector< Rect > &foundLocations, std::vector< double > &foundWeights, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), double scale=1.05, double groupThreshold=2.0, bool useMeanshiftGrouping=false) const
Detects objects of different sizes in the input image. The detected objects are returned as a list of...