Enumerations | |
enum | cv::InterpolationFlags { cv::INTER_NEAREST = 0 , cv::INTER_LINEAR = 1 , cv::INTER_CUBIC = 2 , cv::INTER_AREA = 3 , cv::INTER_LANCZOS4 = 4 , cv::INTER_LINEAR_EXACT = 5 , cv::INTER_NEAREST_EXACT = 6 , cv::INTER_MAX = 7 , cv::WARP_FILL_OUTLIERS = 8 , cv::WARP_INVERSE_MAP = 16 } |
interpolation algorithm More... | |
enum | cv::InterpolationMasks { cv::INTER_BITS = 5 , cv::INTER_BITS2 = INTER_BITS * 2 , cv::INTER_TAB_SIZE = 1 << INTER_BITS , cv::INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE } |
enum | cv::WarpPolarMode { cv::WARP_POLAR_LINEAR = 0 , cv::WARP_POLAR_LOG = 256 } |
Specify the polar mapping mode. More... | |
Functions | |
void | cv::convertMaps (InputArray map1, InputArray map2, OutputArray dstmap1, OutputArray dstmap2, int dstmap1type, bool nninterpolation=false) |
Converts image transformation maps from one representation to another. | |
Mat | cv::getAffineTransform (const Point2f src[], const Point2f dst[]) |
Calculates an affine transform from three pairs of the corresponding points. | |
Mat | cv::getAffineTransform (InputArray src, InputArray dst) |
Mat | cv::getPerspectiveTransform (const Point2f src[], const Point2f dst[], int solveMethod=DECOMP_LU) |
Mat | cv::getPerspectiveTransform (InputArray src, InputArray dst, int solveMethod=DECOMP_LU) |
Calculates a perspective transform from four pairs of the corresponding points. | |
void | cv::getRectSubPix (InputArray image, Size patchSize, Point2f center, OutputArray patch, int patchType=-1) |
Retrieves a pixel rectangle from an image with sub-pixel accuracy. | |
Mat | cv::getRotationMatrix2D (Point2f center, double angle, double scale) |
Calculates an affine matrix of 2D rotation. | |
Matx23d | cv::getRotationMatrix2D_ (Point2f center, double angle, double scale) |
void | cv::invertAffineTransform (InputArray M, OutputArray iM) |
Inverts an affine transformation. | |
void | cv::linearPolar (InputArray src, OutputArray dst, Point2f center, double maxRadius, int flags) |
Remaps an image to polar coordinates space. | |
void | cv::logPolar (InputArray src, OutputArray dst, Point2f center, double M, int flags) |
Remaps an image to semilog-polar coordinates space. | |
void | cv::remap (InputArray src, OutputArray dst, InputArray map1, InputArray map2, int interpolation, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
Applies a generic geometrical transformation to an image. | |
void | cv::resize (InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR) |
Resizes an image. | |
void | cv::warpAffine (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
Applies an affine transformation to an image. | |
void | cv::warpPerspective (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar()) |
Applies a perspective transformation to an image. | |
void | cv::warpPolar (InputArray src, OutputArray dst, Size dsize, Point2f center, double maxRadius, int flags) |
Remaps an image to polar or semilog-polar coordinates space. | |
Detailed Description
Enumeration Type Documentation
◆ InterpolationFlags
#include <opencv2/imgproc.hpp>
interpolation algorithm
Enumerator | |
---|---|
INTER_NEAREST | nearest neighbor interpolation |
INTER_LINEAR | bilinear interpolation |
INTER_CUBIC | bicubic interpolation |
INTER_AREA | resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method. |
INTER_LANCZOS4 | Lanczos interpolation over 8x8 neighborhood |
INTER_LINEAR_EXACT | Bit exact bilinear interpolation |
INTER_NEAREST_EXACT | Bit exact nearest neighbor interpolation. This will produce same results as the nearest neighbor method in PIL, scikit-image or Matlab. |
INTER_MAX | mask for interpolation codes |
WARP_FILL_OUTLIERS | flag, fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero |
WARP_INVERSE_MAP | flag, inverse transformation For example, linearPolar or logPolar transforms:
|
◆ InterpolationMasks
#include <opencv2/imgproc.hpp>
Enumerator | |
---|---|
INTER_BITS | |
INTER_BITS2 | |
INTER_TAB_SIZE | |
INTER_TAB_SIZE2 |
◆ WarpPolarMode
enum cv::WarpPolarMode |
#include <opencv2/imgproc.hpp>
Specify the polar mapping mode.
- See also
- warpPolar
Enumerator | |
---|---|
WARP_POLAR_LINEAR | Remaps an image to/from polar space. |
WARP_POLAR_LOG | Remaps an image to/from semilog-polar space. |
Function Documentation
◆ convertMaps()
void cv::convertMaps | ( | InputArray | map1, |
InputArray | map2, | ||
OutputArray | dstmap1, | ||
OutputArray | dstmap2, | ||
int | dstmap1type, | ||
bool | nninterpolation = false |
||
) |
#include <opencv2/imgproc.hpp>
Converts image transformation maps from one representation to another.
The function converts a pair of maps for remap from one representation to another. The following options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are supported:
- \(\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). This is the most frequently used conversion operation, in which the original floating-point maps (see remap) are converted to a more compact and much faster fixed-point representation. The first output array contains the rounded coordinates and the second array (created only when nninterpolation=false ) contains indices in the interpolation tables.
- \(\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). The same as above but the original maps are stored in one 2-channel matrix.
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same as the originals.
- Parameters
-
map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), respectively. dstmap1 The first output map that has the type dstmap1type and the same size as src . dstmap2 The second output map. dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or CV_32FC2 . nninterpolation Flag indicating whether the fixed-point maps are used for the nearest-neighbor or for a more complex interpolation.
- See also
- remap, undistort, initUndistortRectifyMap
◆ getAffineTransform() [1/2]
#include <opencv2/imgproc.hpp>
Calculates an affine transform from three pairs of the corresponding points.
The function calculates the \(2 \times 3\) matrix of an affine transform so that:
\[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\]
where
\[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\]
- Parameters
-
src Coordinates of triangle vertices in the source image. dst Coordinates of the corresponding triangle vertices in the destination image.
- See also
- warpAffine, transform
◆ getAffineTransform() [2/2]
Mat cv::getAffineTransform | ( | InputArray | src, |
InputArray | dst | ||
) |
#include <opencv2/imgproc.hpp>
◆ getPerspectiveTransform() [1/2]
Mat cv::getPerspectiveTransform | ( | const Point2f | src[], |
const Point2f | dst[], | ||
int | solveMethod = DECOMP_LU |
||
) |
#include <opencv2/imgproc.hpp>
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
◆ getPerspectiveTransform() [2/2]
Mat cv::getPerspectiveTransform | ( | InputArray | src, |
InputArray | dst, | ||
int | solveMethod = DECOMP_LU |
||
) |
#include <opencv2/imgproc.hpp>
Calculates a perspective transform from four pairs of the corresponding points.
The function calculates the \(3 \times 3\) matrix of a perspective transform so that:
\[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\]
where
\[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\]
- Parameters
-
src Coordinates of quadrangle vertices in the source image. dst Coordinates of the corresponding quadrangle vertices in the destination image. solveMethod method passed to cv::solve (DecompTypes)
◆ getRectSubPix()
void cv::getRectSubPix | ( | InputArray | image, |
Size | patchSize, | ||
Point2f | center, | ||
OutputArray | patch, | ||
int | patchType = -1 |
||
) |
#include <opencv2/imgproc.hpp>
Retrieves a pixel rectangle from an image with sub-pixel accuracy.
The function getRectSubPix extracts pixels from src:
\[patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\]
where the values of the pixels at non-integer coordinates are retrieved using bilinear interpolation. Every channel of multi-channel images is processed independently. Also the image should be a single channel or three channel image. While the center of the rectangle must be inside the image, parts of the rectangle may be outside.
- Parameters
-
image Source image. patchSize Size of the extracted patch. center Floating point coordinates of the center of the extracted rectangle within the source image. The center must be inside the image. patch Extracted patch that has the size patchSize and the same number of channels as src . patchType Depth of the extracted pixels. By default, they have the same depth as src .
- See also
- warpAffine, warpPerspective
◆ getRotationMatrix2D()
#include <opencv2/imgproc.hpp>
Calculates an affine matrix of 2D rotation.
The function calculates the following matrix:
\[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\]
where
\[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\]
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
- Parameters
-
center Center of the rotation in the source image. angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner). scale Isotropic scale factor.
- See also
- getAffineTransform, warpAffine, transform
◆ getRotationMatrix2D_()
#include <opencv2/imgproc.hpp>
- See also
- getRotationMatrix2D
◆ invertAffineTransform()
void cv::invertAffineTransform | ( | InputArray | M, |
OutputArray | iM | ||
) |
#include <opencv2/imgproc.hpp>
Inverts an affine transformation.
The function computes an inverse affine transformation represented by \(2 \times 3\) matrix M:
\[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\]
The result is also a \(2 \times 3\) matrix of the same type as M.
- Parameters
-
M Original affine transformation. iM Output reverse affine transformation.
◆ linearPolar()
void cv::linearPolar | ( | InputArray | src, |
OutputArray | dst, | ||
Point2f | center, | ||
double | maxRadius, | ||
int | flags | ||
) |
#include <opencv2/imgproc.hpp>
Remaps an image to polar coordinates space.
- Deprecated:
- This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
◆ logPolar()
void cv::logPolar | ( | InputArray | src, |
OutputArray | dst, | ||
Point2f | center, | ||
double | M, | ||
int | flags | ||
) |
#include <opencv2/imgproc.hpp>
Remaps an image to semilog-polar coordinates space.
- Deprecated:
- This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
◆ remap()
void cv::remap | ( | InputArray | src, |
OutputArray | dst, | ||
InputArray | map1, | ||
InputArray | map2, | ||
int | interpolation, | ||
int | borderMode = BORDER_CONSTANT , |
||
const Scalar & | borderValue = Scalar() |
||
) |
#include <opencv2/imgproc.hpp>
Applies a generic geometrical transformation to an image.
The function remap transforms the source image using the specified map:
\[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\]
where values of pixels with non-integer coordinates are computed using one of available interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in \(map_1\), or fixed-point maps created by using convertMaps. The reason you might want to convert from floating to fixed-point representations of a map is that they can yield much faster (2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x), cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients.
This function cannot operate in-place.
- Parameters
-
src Source image. dst Destination image. It has the same size as map1 and the same type as src . map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point representation to fixed-point for speed. map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map if map1 is (x,y) points), respectively. interpolation Interpolation method (see InterpolationFlags). The methods INTER_AREA and INTER_LINEAR_EXACT are not supported by this function. borderMode Pixel extrapolation method (see BorderTypes). When borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that corresponds to the "outliers" in the source image are not modified by the function. borderValue Value used in case of a constant border. By default, it is 0.
- Note
- Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
◆ resize()
void cv::resize | ( | InputArray | src, |
OutputArray | dst, | ||
Size | dsize, | ||
double | fx = 0 , |
||
double | fy = 0 , |
||
int | interpolation = INTER_LINEAR |
||
) |
#include <opencv2/imgproc.hpp>
Resizes an image.
The function resize resizes the image src down to or up to the specified size. Note that the initial dst type or size are not taken into account. Instead, the size and type are derived from the src
,dsize
,fx
, and fy
. If you want to resize src so that it fits the pre-created dst, you may call the function as follows:
If you want to decimate the image by factor of 2 in each direction, you can call the function this way:
To shrink an image, it will generally look best with INTER_AREA interpolation, whereas to enlarge an image, it will generally look best with INTER_CUBIC (slow) or INTER_LINEAR (faster but still looks OK).
- Parameters
-
src input image. dst output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src. dsize output image size; if it equals zero ( None
in Python), it is computed as:\[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\]
Either dsize or both fx and fy must be non-zero.fx scale factor along the horizontal axis; when it equals 0, it is computed as \[\texttt{(double)dsize.width/src.cols}\]
fy scale factor along the vertical axis; when it equals 0, it is computed as \[\texttt{(double)dsize.height/src.rows}\]
interpolation interpolation method, see InterpolationFlags
- See also
- warpAffine, warpPerspective, remap
◆ warpAffine()
void cv::warpAffine | ( | InputArray | src, |
OutputArray | dst, | ||
InputArray | M, | ||
Size | dsize, | ||
int | flags = INTER_LINEAR , |
||
int | borderMode = BORDER_CONSTANT , |
||
const Scalar & | borderValue = Scalar() |
||
) |
#include <opencv2/imgproc.hpp>
Applies an affine transformation to an image.
The function warpAffine transforms the source image using the specified matrix:
\[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\]
when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invertAffineTransform and then put in the formula above instead of M. The function cannot operate in-place.
- Parameters
-
src input image. dst output image that has the size dsize and the same type as src . M \(2\times 3\) transformation matrix. dsize size of the output image. flags combination of interpolation methods (see InterpolationFlags) and the optional flag WARP_INVERSE_MAP that means that M is the inverse transformation ( \(\texttt{dst}\rightarrow\texttt{src}\) ). borderMode pixel extrapolation method (see BorderTypes); when borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to the "outliers" in the source image are not modified by the function. borderValue value used in case of a constant border; by default, it is 0.
- See also
- warpPerspective, resize, remap, getRectSubPix, transform
◆ warpPerspective()
void cv::warpPerspective | ( | InputArray | src, |
OutputArray | dst, | ||
InputArray | M, | ||
Size | dsize, | ||
int | flags = INTER_LINEAR , |
||
int | borderMode = BORDER_CONSTANT , |
||
const Scalar & | borderValue = Scalar() |
||
) |
#include <opencv2/imgproc.hpp>
Applies a perspective transformation to an image.
The function warpPerspective transforms the source image using the specified matrix:
\[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\]
when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert and then put in the formula above instead of M. The function cannot operate in-place.
- Parameters
-
src input image. dst output image that has the size dsize and the same type as src . M \(3\times 3\) transformation matrix. dsize size of the output image. flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation ( \(\texttt{dst}\rightarrow\texttt{src}\) ). borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE). borderValue value used in case of a constant border; by default, it equals 0.
- See also
- warpAffine, resize, remap, getRectSubPix, perspectiveTransform
◆ warpPolar()
void cv::warpPolar | ( | InputArray | src, |
OutputArray | dst, | ||
Size | dsize, | ||
Point2f | center, | ||
double | maxRadius, | ||
int | flags | ||
) |
#include <opencv2/imgproc.hpp>
Remaps an image to polar or semilog-polar coordinates space.
Transform the source image using the following transformation:
\[ dst(\rho , \phi ) = src(x,y) \]
where
\[ \begin{array}{l} \vec{I} = (x - center.x, \;y - center.y) \\ \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ \rho = \left\{\begin{matrix} Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ \end{matrix}\right. \end{array} \]
and
\[ \begin{array}{l} Kangle = dsize.height / 2\Pi \\ Klin = dsize.width / maxRadius \\ Klog = dsize.width / log_e(maxRadius) \\ \end{array} \]
- Linear vs semilog mapping
Polar mapping can be linear or semi-log. Add one of WarpPolarMode to flags
to specify the polar mapping mode.
Linear is the default mode.
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) in contrast to peripheral vision where acuity is minor.
- Option on
dsize
:
- if both values in
dsize <=0
(default), the destination image will have (almost) same area of source bounding circle:\[\begin{array}{l} dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ dsize.width = \texttt{cvRound}(maxRadius) \\ dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ \end{array}\]
- if only
dsize.height <= 0
, the destination image area will be proportional to the bounding circle area but scaled byKx * Kx
:\[\begin{array}{l} dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ \end{array} \]
- if both values in
dsize > 0
, the destination image will have the given size therefore the area of the bounding circle will be scaled todsize
.
- Reverse mapping
You can get reverse mapping adding WARP_INVERSE_MAP to flags
In addiction, to calculate the original coordinate from a polar mapped coordinate \((rho, phi)->(x, y)\):
- Parameters
-
src Source image. dst Destination image. It will have same type as src. dsize The destination image size (see description for valid options). center The transformation center. maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. flags A combination of interpolation methods, InterpolationFlags + WarpPolarMode. - Add WARP_POLAR_LINEAR to select linear polar mapping (default)
- Add WARP_POLAR_LOG to select semilog polar mapping
- Add WARP_INVERSE_MAP for reverse mapping.
- Note
- The function can not operate in-place.
- To calculate magnitude and angle in degrees cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- This function uses remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- See also
- cv::remap