Base class for text detection networks. More...
#include <opencv2/dnn/dnn.hpp>

Public Member Functions | |
void | detect (InputArray frame, std::vector< std::vector< Point > > &detections) const |
void | detect (InputArray frame, std::vector< std::vector< Point > > &detections, std::vector< float > &confidences) const |
Performs detection. | |
void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections) const |
void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections, std::vector< float > &confidences) const |
Performs detection. | |
![]() | |
Model () | |
Model (const Model &)=default | |
Model (const Net &network) | |
Create model from deep learning network. | |
Model (const String &model, const String &config="") | |
Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter. | |
Model (Model &&)=default | |
Impl * | getImpl () const |
Impl & | getImplRef () const |
Net & | getNetwork_ () |
Net & | getNetwork_ () const |
operator Net & () const | |
Model & | operator= (const Model &)=default |
Model & | operator= (Model &&)=default |
void | predict (InputArray frame, OutputArrayOfArrays outs) const |
Given the input frame, create input blob, run net and return the output blobs . | |
Model & | setInputCrop (bool crop) |
Set flag crop for frame. | |
Model & | setInputMean (const Scalar &mean) |
Set mean value for frame. | |
void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
Set preprocessing parameters for frame. | |
Model & | setInputScale (const Scalar &scale) |
Set scalefactor value for frame. | |
Model & | setInputSize (const Size &size) |
Set input size for frame. | |
Model & | setInputSize (int width, int height) |
Model & | setInputSwapRB (bool swapRB) |
Set flag swapRB for frame. | |
Model & | setPreferableBackend (dnn::Backend backendId) |
Model & | setPreferableTarget (dnn::Target targetId) |
Protected Member Functions | |
TextDetectionModel () | |
Additional Inherited Members | |
![]() | |
Ptr< Impl > | impl |
Detailed Description
Base class for text detection networks.
Constructor & Destructor Documentation
◆ TextDetectionModel()
|
protected |
Member Function Documentation
◆ detect() [1/2]
void cv::dnn::TextDetectionModel::detect | ( | InputArray | frame, |
std::vector< std::vector< Point > > & | detections | ||
) | const |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
◆ detect() [2/2]
void cv::dnn::TextDetectionModel::detect | ( | InputArray | frame, |
std::vector< std::vector< Point > > & | detections, | ||
std::vector< float > & | confidences | ||
) | const |
Performs detection.
Given the input frame
, prepare network input, run network inference, post-process network output and return result detections.
Each result is quadrangle's 4 points in this order:
- bottom-left
- top-left
- top-right
- bottom-right
Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
- Note
- If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
- Parameters
-
[in] frame The input image [out] detections array with detections' quadrangles (4 points per result) [out] confidences array with detection confidences
◆ detectTextRectangles() [1/2]
void cv::dnn::TextDetectionModel::detectTextRectangles | ( | InputArray | frame, |
std::vector< cv::RotatedRect > & | detections | ||
) | const |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
◆ detectTextRectangles() [2/2]
void cv::dnn::TextDetectionModel::detectTextRectangles | ( | InputArray | frame, |
std::vector< cv::RotatedRect > & | detections, | ||
std::vector< float > & | confidences | ||
) | const |
Performs detection.
Given the input frame
, prepare network input, run network inference, post-process network output and return result detections.
Each result is rotated rectangle.
- Note
- Result may be inaccurate in case of strong perspective transformations.
- Parameters
-
[in] frame the input image [out] detections array with detections' RotationRect results [out] confidences array with detection confidences
The documentation for this class was generated from the following file:
- opencv2/dnn/dnn.hpp