Shi-Tomasi corner detector
Table of Contents
Prev Tutorial: Harris corner detector
Next Tutorial: Creating your own corner detector
Original author | Ana Huamán |
Compatibility | OpenCV >= 3.0 |
Goal
In this tutorial you will learn how to:
- Use the function cv::goodFeaturesToTrack to detect corners using the Shi-Tomasi method ([Shi94]).
Theory
Code
C++
This tutorial code's is shown lines below. You can also download it from here
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat src, src_gray;
int maxCorners = 23;
int maxTrackbar = 100;
RNG rng(12345);
const char* source_window = "Image";
void goodFeaturesToTrack_Demo( int, void* );
int main( int argc, char** argv )
{
CommandLineParser parser( argc, argv, "{@input | pic3.png | input image}" );
src = imread( samples::findFile( parser.get<String>( "@input" ) ) );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
cvtColor( src, src_gray, COLOR_BGR2GRAY );
namedWindow( source_window );
createTrackbar( "Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo );
imshow( source_window, src );
goodFeaturesToTrack_Demo( 0, 0 );
waitKey();
return 0;
}
void goodFeaturesToTrack_Demo( int, void* )
{
maxCorners = MAX(maxCorners, 1);
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3, gradientSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
goodFeaturesToTrack( src_gray,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
gradientSize,
useHarrisDetector,
k );
cout << "** Number of corners detected: " << corners.size() << endl;
int radius = 4;
for( size_t i = 0; i < corners.size(); i++ )
{
circle( copy, corners[i], radius, Scalar(rng.uniform(0,255), rng.uniform(0, 256), rng.uniform(0, 256)), FILLED );
}
namedWindow( source_window );
imshow( source_window, copy );
}
CV_NODISCARD_STD Mat clone() const
Creates a full copy of the array and the underlying data.
"black box" representation of the file storage associated with a file on disk.
Definition: core.hpp:106
STL namespace.
Java
This tutorial code's is shown lines below. You can also download it from here
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GoodFeaturesToTrack {
private Mat src = new Mat();
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgLabel;
private static final int MAX_THRESHOLD = 100;
private int maxCorners = 23;
private Random rng = new Random(12345);
public GoodFeaturesToTrack(String[] args) {
String filename = args.length > 0 ? args[0] : "../data/pic3.png";
src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
// Create and set up the window.
frame = new JFrame("Shi-Tomasi corner detector demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Max corners:"));
JSlider slider = new JSlider(0, MAX_THRESHOLD, maxCorners);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
maxCorners = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
maxCorners = Math.max(maxCorners, 1);
MatOfPoint corners = new MatOfPoint();
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3, gradientSize = 3;
boolean useHarrisDetector = false;
double k = 0.04;
Mat copy = src.clone();
Imgproc.goodFeaturesToTrack(srcGray, corners, maxCorners, qualityLevel, minDistance, new Mat(),
blockSize, gradientSize, useHarrisDetector, k);
System.out.println("** Number of corners detected: " + corners.rows());
int[] cornersData = new int[(int) (corners.total() * corners.channels())];
corners.get(0, 0, cornersData);
int radius = 4;
for (int i = 0; i < corners.rows(); i++) {
Imgproc.circle(copy, new Point(cornersData[i * 2], cornersData[i * 2 + 1]), radius,
new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256)), Imgproc.FILLED);
}
imgLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(copy)));
frame.repaint();
}
}
public class GoodFeaturesToTrackDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new GoodFeaturesToTrack(args);
}
});
}
}
GFrame copy(const GFrame &in)
Python
This tutorial code's is shown lines below. You can also download it from here
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
import random as rng
source_window = 'Image'
maxTrackbar = 100
rng.seed(12345)
def goodFeaturesToTrack_Demo(val):
maxCorners = max(val, 1)
# Parameters for Shi-Tomasi algorithm
qualityLevel = 0.01
minDistance = 10
blockSize = 3
gradientSize = 3
useHarrisDetector = False
k = 0.04
# Copy the source image
copy = np.copy(src)
# Apply corner detection
corners = cv.goodFeaturesToTrack(src_gray, maxCorners, qualityLevel, minDistance, None, \
blockSize=blockSize, gradientSize=gradientSize, useHarrisDetector=useHarrisDetector, k=k)
# Draw corners detected
print('** Number of corners detected:', corners.shape[0])
radius = 4
for i in range(corners.shape[0]):
cv.circle(copy, (int(corners[i,0,0]), int(corners[i,0,1])), radius, (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)), cv.FILLED)
# Show what you got
cv.namedWindow(source_window)
cv.imshow(source_window, copy)
# Load source image and convert it to gray
parser = argparse.ArgumentParser(description='Code for Shi-Tomasi corner detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='pic3.png')
args = parser.parse_args()
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# Create a window and a trackbar
cv.namedWindow(source_window)
maxCorners = 23 # initial threshold
cv.createTrackbar('Threshold: ', source_window, maxCorners, maxTrackbar, goodFeaturesToTrack_Demo)
cv.imshow(source_window, src)
goodFeaturesToTrack_Demo(maxCorners)
cv::String findFile(const cv::String &relative_path, bool required=true, bool silentMode=false)
Try to find requested data file.
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int createTrackbar(const String &trackbarname, const String &winname, int *value, int count, TrackbarCallback onChange=0, void *userdata=0)
Creates a trackbar and attaches it to the specified window.
CV_EXPORTS_W Mat imread(const String &filename, int flags=IMREAD_COLOR)
Loads an image from a file.
void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
Converts an image from one color space to another.
void circle(InputOutputArray img, Point center, int radius, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
Draws a circle.
void goodFeaturesToTrack(InputArray image, OutputArray corners, int maxCorners, double qualityLevel, double minDistance, InputArray mask=noArray(), int blockSize=3, bool useHarrisDetector=false, double k=0.04)
Determines strong corners on an image.
Explanation
Result
