Loading...
Searching...
No Matches
samples/cpp/stitching_detailed.cpp
A detailed example on image stitching
#include <iostream>
#include <fstream>
#include <string>
#include "opencv2/opencv_modules.hpp"
#include <opencv2/core/utility.hpp>
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/timelapsers.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#ifdef HAVE_OPENCV_XFEATURES2D
#include "opencv2/xfeatures2d.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#endif
#define ENABLE_LOG 1
#define LOG(msg) std::cout << msg
#define LOGLN(msg) std::cout << msg << std::endl
using namespace std;
using namespace cv;
using namespace cv::detail;
static void printUsage(char** argv)
{
cout <<
"Rotation model images stitcher.\n\n"
<< argv[0] << " img1 img2 [...imgN] [flags]\n\n"
"Flags:\n"
" --preview\n"
" Run stitching in the preview mode. Works faster than usual mode,\n"
" but output image will have lower resolution.\n"
" --try_cuda (yes|no)\n"
" Try to use CUDA. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
"\nMotion Estimation Flags:\n"
" --work_megapix <float>\n"
" Resolution for image registration step. The default is 0.6 Mpx.\n"
" --features (surf|orb|sift|akaze)\n"
" Type of features used for images matching.\n"
" The default is surf if available, orb otherwise.\n"
" --matcher (homography|affine)\n"
" Matcher used for pairwise image matching.\n"
" --estimator (homography|affine)\n"
" Type of estimator used for transformation estimation.\n"
" --match_conf <float>\n"
" Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.\n"
" --conf_thresh <float>\n"
" Threshold for two images are from the same panorama confidence.\n"
" The default is 1.0.\n"
" --ba (no|reproj|ray|affine)\n"
" Bundle adjustment cost function. The default is ray.\n"
" --ba_refine_mask (mask)\n"
" Set refinement mask for bundle adjustment. It looks like 'x_xxx',\n"
" where 'x' means refine respective parameter and '_' means don't\n"
" refine one, and has the following format:\n"
" <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle\n"
" adjustment doesn't support estimation of selected parameter then\n"
" the respective flag is ignored.\n"
" --wave_correct (no|horiz|vert)\n"
" Perform wave effect correction. The default is 'horiz'.\n"
" --save_graph <file_name>\n"
" Save matches graph represented in DOT language to <file_name> file.\n"
" Labels description: Nm is number of matches, Ni is number of inliers,\n"
" C is confidence.\n"
"\nCompositing Flags:\n"
" --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)\n"
" Warp surface type. The default is 'spherical'.\n"
" --seam_megapix <float>\n"
" Resolution for seam estimation step. The default is 0.1 Mpx.\n"
" --seam (no|voronoi|gc_color|gc_colorgrad)\n"
" Seam estimation method. The default is 'gc_color'.\n"
" --compose_megapix <float>\n"
" Resolution for compositing step. Use -1 for original resolution.\n"
" The default is -1.\n"
" --expos_comp (no|gain|gain_blocks|channels|channels_blocks)\n"
" Exposure compensation method. The default is 'gain_blocks'.\n"
" --expos_comp_nr_feeds <int>\n"
" Number of exposure compensation feed. The default is 1.\n"
" --expos_comp_nr_filtering <int>\n"
" Number of filtering iterations of the exposure compensation gains.\n"
" Only used when using a block exposure compensation method.\n"
" The default is 2.\n"
" --expos_comp_block_size <int>\n"
" BLock size in pixels used by the exposure compensator.\n"
" Only used when using a block exposure compensation method.\n"
" The default is 32.\n"
" --blend (no|feather|multiband)\n"
" Blending method. The default is 'multiband'.\n"
" --blend_strength <float>\n"
" Blending strength from [0,100] range. The default is 5.\n"
" --output <result_img>\n"
" The default is 'result.jpg'.\n"
" --timelapse (as_is|crop) \n"
" Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.\n"
" --rangewidth <int>\n"
" uses range_width to limit number of images to match with.\n";
}
// Default command line args
vector<String> img_names;
bool preview = false;
bool try_cuda = false;
double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
float conf_thresh = 1.f;
#ifdef HAVE_OPENCV_XFEATURES2D
string features_type = "surf";
float match_conf = 0.65f;
#else
string features_type = "orb";
float match_conf = 0.3f;
#endif
string matcher_type = "homography";
string estimator_type = "homography";
string ba_cost_func = "ray";
string ba_refine_mask = "xxxxx";
bool do_wave_correct = true;
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
bool save_graph = false;
std::string save_graph_to;
string warp_type = "spherical";
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
int expos_comp_nr_feeds = 1;
int expos_comp_nr_filtering = 2;
int expos_comp_block_size = 32;
string seam_find_type = "gc_color";
int blend_type = Blender::MULTI_BAND;
int timelapse_type = Timelapser::AS_IS;
float blend_strength = 5;
string result_name = "result.jpg";
bool timelapse = false;
int range_width = -1;
static int parseCmdArgs(int argc, char** argv)
{
if (argc == 1)
{
printUsage(argv);
return -1;
}
for (int i = 1; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage(argv);
return -1;
}
else if (string(argv[i]) == "--preview")
{
preview = true;
}
else if (string(argv[i]) == "--try_cuda")
{
if (string(argv[i + 1]) == "no")
try_cuda = false;
else if (string(argv[i + 1]) == "yes")
try_cuda = true;
else
{
cout << "Bad --try_cuda flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--work_megapix")
{
work_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--seam_megapix")
{
seam_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--compose_megapix")
{
compose_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--result")
{
result_name = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--features")
{
features_type = argv[i + 1];
if (string(features_type) == "orb")
match_conf = 0.3f;
i++;
}
else if (string(argv[i]) == "--matcher")
{
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
matcher_type = argv[i + 1];
else
{
cout << "Bad --matcher flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--estimator")
{
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
estimator_type = argv[i + 1];
else
{
cout << "Bad --estimator flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--match_conf")
{
match_conf = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--conf_thresh")
{
conf_thresh = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--ba")
{
ba_cost_func = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--ba_refine_mask")
{
ba_refine_mask = argv[i + 1];
if (ba_refine_mask.size() != 5)
{
cout << "Incorrect refinement mask length.\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--wave_correct")
{
if (string(argv[i + 1]) == "no")
do_wave_correct = false;
else if (string(argv[i + 1]) == "horiz")
{
do_wave_correct = true;
wave_correct = detail::WAVE_CORRECT_HORIZ;
}
else if (string(argv[i + 1]) == "vert")
{
do_wave_correct = true;
wave_correct = detail::WAVE_CORRECT_VERT;
}
else
{
cout << "Bad --wave_correct flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--save_graph")
{
save_graph = true;
save_graph_to = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--warp")
{
warp_type = string(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--expos_comp")
{
if (string(argv[i + 1]) == "no")
expos_comp_type = ExposureCompensator::NO;
else if (string(argv[i + 1]) == "gain")
expos_comp_type = ExposureCompensator::GAIN;
else if (string(argv[i + 1]) == "gain_blocks")
expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
else if (string(argv[i + 1]) == "channels")
expos_comp_type = ExposureCompensator::CHANNELS;
else if (string(argv[i + 1]) == "channels_blocks")
expos_comp_type = ExposureCompensator::CHANNELS_BLOCKS;
else
{
cout << "Bad exposure compensation method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--expos_comp_nr_feeds")
{
expos_comp_nr_feeds = atoi(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--expos_comp_nr_filtering")
{
expos_comp_nr_filtering = atoi(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--expos_comp_block_size")
{
expos_comp_block_size = atoi(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--seam")
{
if (string(argv[i + 1]) == "no" ||
string(argv[i + 1]) == "voronoi" ||
string(argv[i + 1]) == "gc_color" ||
string(argv[i + 1]) == "gc_colorgrad" ||
string(argv[i + 1]) == "dp_color" ||
string(argv[i + 1]) == "dp_colorgrad")
seam_find_type = argv[i + 1];
else
{
cout << "Bad seam finding method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend")
{
if (string(argv[i + 1]) == "no")
blend_type = Blender::NO;
else if (string(argv[i + 1]) == "feather")
blend_type = Blender::FEATHER;
else if (string(argv[i + 1]) == "multiband")
blend_type = Blender::MULTI_BAND;
else
{
cout << "Bad blending method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--timelapse")
{
timelapse = true;
if (string(argv[i + 1]) == "as_is")
timelapse_type = Timelapser::AS_IS;
else if (string(argv[i + 1]) == "crop")
timelapse_type = Timelapser::CROP;
else
{
cout << "Bad timelapse method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--rangewidth")
{
range_width = atoi(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--blend_strength")
{
blend_strength = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else
img_names.push_back(argv[i]);
}
if (preview)
{
compose_megapix = 0.6;
}
return 0;
}
int main(int argc, char* argv[])
{
#if ENABLE_LOG
int64 app_start_time = getTickCount();
#endif
#if 0
#endif
int retval = parseCmdArgs(argc, argv);
if (retval)
return retval;
// Check if have enough images
int num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
double work_scale = 1, seam_scale = 1, compose_scale = 1;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
LOGLN("Finding features...");
#if ENABLE_LOG
int64 t = getTickCount();
#endif
Ptr<Feature2D> finder;
if (features_type == "orb")
{
finder = ORB::create();
}
else if (features_type == "akaze")
{
finder = AKAZE::create();
}
#ifdef HAVE_OPENCV_XFEATURES2D
else if (features_type == "surf")
{
finder = xfeatures2d::SURF::create();
}
#endif
else if (features_type == "sift")
{
finder = SIFT::create();
}
else
{
cout << "Unknown 2D features type: '" << features_type << "'.\n";
return -1;
}
Mat full_img, img;
vector<ImageFeatures> features(num_images);
vector<Mat> images(num_images);
vector<Size> full_img_sizes(num_images);
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(samples::findFile(img_names[i]));
full_img_sizes[i] = full_img.size();
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
is_work_scale_set = true;
}
}
if (!is_seam_scale_set)
{
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
computeImageFeatures(finder, img, features[i]);
features[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
images[i] = img.clone();
}
full_img.release();
img.release();
LOG("Pairwise matching");
#if ENABLE_LOG
t = getTickCount();
#endif
vector<MatchesInfo> pairwise_matches;
Ptr<FeaturesMatcher> matcher;
if (matcher_type == "affine")
matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf);
else if (range_width==-1)
matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf);
else
matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf);
(*matcher)(features, pairwise_matches);
matcher->collectGarbage();
// Check if we should save matches graph
if (save_graph)
{
LOGLN("Saving matches graph...");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
}
// Leave only images we are sure are from the same panorama
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector<Mat> img_subset;
vector<String> img_names_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// Check if we still have enough images
num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
Ptr<Estimator> estimator;
if (estimator_type == "affine")
estimator = makePtr<AffineBasedEstimator>();
else
estimator = makePtr<HomographyBasedEstimator>();
vector<CameraParams> cameras;
if (!(*estimator)(features, pairwise_matches, cameras))
{
cout << "Homography estimation failed.\n";
return -1;
}
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R = R;
LOGLN("Initial camera intrinsics #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
}
Ptr<detail::BundleAdjusterBase> adjuster;
if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>();
else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>();
else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>();
else
{
cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
return -1;
}
adjuster->setConfThresh(conf_thresh);
if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
adjuster->setRefinementMask(refine_mask);
if (!(*adjuster)(features, pairwise_matches, cameras))
{
cout << "Camera parameters adjusting failed.\n";
return -1;
}
// Find median focal length
vector<double> focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
LOGLN("Camera #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
focals.push_back(cameras[i].focal);
}
sort(focals.begin(), focals.end());
float warped_image_scale;
if (focals.size() % 2 == 1)
warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
else
warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
if (do_wave_correct)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R.clone());
waveCorrect(rmats, wave_correct);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
LOGLN("Warping images (auxiliary)... ");
#if ENABLE_LOG
t = getTickCount();
#endif
vector<Point> corners(num_images);
vector<UMat> masks_warped(num_images);
vector<UMat> images_warped(num_images);
vector<Size> sizes(num_images);
vector<UMat> masks(num_images);
// Prepare images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<WarperCreator> warper_creator;
#ifdef HAVE_OPENCV_CUDAWARPING
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane")
warper_creator = makePtr<cv::PlaneWarperGpu>();
else if (warp_type == "cylindrical")
warper_creator = makePtr<cv::CylindricalWarperGpu>();
else if (warp_type == "spherical")
warper_creator = makePtr<cv::SphericalWarperGpu>();
}
else
#endif
{
if (warp_type == "plane")
warper_creator = makePtr<cv::PlaneWarper>();
else if (warp_type == "affine")
warper_creator = makePtr<cv::AffineWarper>();
else if (warp_type == "cylindrical")
warper_creator = makePtr<cv::CylindricalWarper>();
else if (warp_type == "spherical")
warper_creator = makePtr<cv::SphericalWarper>();
else if (warp_type == "fisheye")
warper_creator = makePtr<cv::FisheyeWarper>();
else if (warp_type == "stereographic")
warper_creator = makePtr<cv::StereographicWarper>();
else if (warp_type == "compressedPlaneA2B1")
warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);
else if (warp_type == "compressedPlaneA1.5B1")
warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f);
else if (warp_type == "compressedPlanePortraitA2B1")
warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f);
else if (warp_type == "compressedPlanePortraitA1.5B1")
warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f);
else if (warp_type == "paniniA2B1")
warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);
else if (warp_type == "paniniA1.5B1")
warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f);
else if (warp_type == "paniniPortraitA2B1")
warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f);
else if (warp_type == "paniniPortraitA1.5B1")
warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f);
else if (warp_type == "mercator")
warper_creator = makePtr<cv::MercatorWarper>();
else if (warp_type == "transverseMercator")
warper_creator = makePtr<cv::TransverseMercatorWarper>();
}
if (!warper_creator)
{
cout << "Can't create the following warper '" << warp_type << "'\n";
return 1;
}
Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
for (int i = 0; i < num_images; ++i)
{
Mat_<float> K;
float swa = (float)seam_work_aspect;
K(0,0) *= swa; K(0,2) *= swa;
K(1,1) *= swa; K(1,2) *= swa;
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
vector<UMat> images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
LOGLN("Compensating exposure...");
#if ENABLE_LOG
t = getTickCount();
#endif
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
{
gcompensator->setNrFeeds(expos_comp_nr_feeds);
}
{
ccompensator->setNrFeeds(expos_comp_nr_feeds);
}
{
bcompensator->setNrFeeds(expos_comp_nr_feeds);
bcompensator->setNrGainsFilteringIterations(expos_comp_nr_filtering);
bcompensator->setBlockSize(expos_comp_block_size, expos_comp_block_size);
}
compensator->feed(corners, images_warped, masks_warped);
LOGLN("Finding seams...");
#if ENABLE_LOG
t = getTickCount();
#endif
Ptr<SeamFinder> seam_finder;
if (seam_find_type == "no")
seam_finder = makePtr<detail::NoSeamFinder>();
else if (seam_find_type == "voronoi")
seam_finder = makePtr<detail::VoronoiSeamFinder>();
else if (seam_find_type == "gc_color")
{
#ifdef HAVE_OPENCV_CUDALEGACY
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
}
else if (seam_find_type == "gc_colorgrad")
{
#ifdef HAVE_OPENCV_CUDALEGACY
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD);
if (!seam_finder)
{
cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
return 1;
}
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
#if ENABLE_LOG
t = getTickCount();
#endif
Mat img_warped, img_warped_s;
Ptr<Blender> blender;
Ptr<Timelapser> timelapser;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx]+1);
// Read image and resize it if necessary
full_img = imread(samples::findFile(img_names[img_idx]));
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
is_compose_scale_set = true;
// Compute relative scales
//compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale
warped_image_scale *= static_cast<float>(compose_work_aspect);
warper = warper_creator->create(warped_image_scale);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update intrinsics
cameras[i].focal *= compose_work_aspect;
cameras[i].ppx *= compose_work_aspect;
cameras[i].ppy *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
}
Mat K;
Rect roi = warper->warpRoi(sz, K, cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
else
img = full_img;
full_img.release();
Mat K;
// Warp the current image
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
// Warp the current image mask
mask.setTo(Scalar::all(255));
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.release();
img.release();
mask.release();
mask_warped = seam_mask & mask_warped;
if (!blender && !timelapse)
{
blender = Blender::createDefault(blend_type, try_cuda);
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_cuda);
else if (blend_type == Blender::MULTI_BAND)
{
}
else if (blend_type == Blender::FEATHER)
{
fb->setSharpness(1.f/blend_width);
}
blender->prepare(corners, sizes);
}
else if (!timelapser && timelapse)
{
timelapser = Timelapser::createDefault(timelapse_type);
timelapser->initialize(corners, sizes);
}
// Blend the current image
if (timelapse)
{
String fixedFileName;
if (pos_s == String::npos)
{
fixedFileName = "fixed_" + img_names[img_idx];
}
else
{
fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s);
}
imwrite(fixedFileName, timelapser->getDst());
}
else
{
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
}
if (!timelapse)
{
Mat result, result_mask;
blender->blend(result, result_mask);
imwrite(result_name, result);
}
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
return 0;
}
CV_NODISCARD_STD Mat clone() const
Creates a full copy of the array and the underlying data.
void convertTo(OutputArray m, int rtype, double alpha=1, double beta=0) const
Converts an array to another data type with optional scaling.
void release()
Decrements the reference counter and deallocates the matrix if needed.
Exposure compensator which tries to remove exposure related artifacts by adjusting image blocks.
Definition: exposure_compensate.hpp:170
void setBlockSize(int width, int height)
Definition: exposure_compensate.hpp:182
void setNrFeeds(int nr_feeds)
Definition: exposure_compensate.hpp:178
void setNrGainsFilteringIterations(int nr_iterations)
Definition: exposure_compensate.hpp:185
Exposure compensator which tries to remove exposure related artifacts by adjusting image intensities ...
Definition: exposure_compensate.hpp:146
void setNrFeeds(int nr_feeds)
Definition: exposure_compensate.hpp:155
Simple blender which mixes images at its borders.
Definition: blenders.hpp:101
Exposure compensator which tries to remove exposure related artifacts by adjusting image intensities,...
Definition: exposure_compensate.hpp:112
void setNrFeeds(int nr_feeds)
Definition: exposure_compensate.hpp:126
Blender which uses multi-band blending algorithm (see ).
Definition: blenders.hpp:128
void sort(InputArray src, OutputArray dst, int flags)
Sorts each row or each column of a matrix.
void log(InputArray src, OutputArray dst)
Calculates the natural logarithm of every array element.
void min(InputArray src1, InputArray src2, OutputArray dst)
Calculates per-element minimum of two arrays or an array and a scalar.
int cvRound(double value)
Rounds floating-point number to the nearest integer.
Definition: fast_math.hpp:200
GMat convertTo(const GMat &src, int rdepth, double alpha=1, double beta=0)
Converts a matrix to another data depth with optional scaling.
CV_EXPORTS_W bool imwrite(const String &filename, InputArray img, const std::vector< int > ¶ms=std::vector< int >())
Saves an image to a specified file.
CV_EXPORTS_W Mat imread(const String &filename, int flags=IMREAD_COLOR)
Loads an image from a file.
void dilate(InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar &borderValue=morphologyDefaultBorderValue())
Dilates an image by using a specific structuring element.
void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
Resizes an image.
void computeImageFeatures(const Ptr< Feature2D > &featuresFinder, InputArrayOfArrays images, std::vector< ImageFeatures > &features, InputArrayOfArrays masks=noArray())
std::vector< int > leaveBiggestComponent(std::vector< ImageFeatures > &features, std::vector< MatchesInfo > &pairwise_matches, float conf_threshold)
String matchesGraphAsString(std::vector< String > &paths, std::vector< MatchesInfo > &pairwise_matches, float conf_threshold)
void waveCorrect(std::vector< Mat > &rmats, WaveCorrectKind kind)
Tries to make panorama more horizontal (or vertical).
Rect resultRoi(const std::vector< Point > &corners, const std::vector< UMat > &images)
Definition: tracking.detail.hpp:21
"black box" representation of the file storage associated with a file on disk.
Definition: core.hpp:106
STL namespace.